अमूर्त

Offline Signature Verification Based on SVM and Neural Network

Anjali.R, Manju Rani Mathew

Biometrics plays a significant role in day to day life. It is widely used as a means of personal identification and authentication. Of this signature is most important. Handwritten signature is unique to an individual and virtually impossible to duplicate. This emphasizes the need for an automatic verification system. The aim of this paper is to measure gray level features of an image when it is distorted by a complex background and train by using neural network classifier and SVM. The practical signature verification problems include problems due to the need of segmenting the signature from the image document. This problem is overcome in this paper by calculating the gray level distortion and segmenting the original signature from the complex backgrounds. Then the image is trained by a neural network by using feed forward back propagation algorithm and SVM

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

जर्नल हाइलाइट्स

अंकीय संकेत प्रक्रिया अतुल्यकालिक संकलन अधोचालकसंचालन अनुकूली संकेत संकेत अलग नेटवर्किंग आर्टिफ़िशियल क्लिनिक और इलेक्ट्रिकल में इलेक्ट्रिक ड्राइवर और उत्पाद इलेक्ट्रॉनिक सामग्री इलेक्ट्रॉनिक्स में आर्टिफिशियल ब्यूरो उपग्रह संचार एपीसैन निदान एवं संवेदन प्रणाली नियंत्रण सिद्धांत और सिद्धांत पावर इलेक्ट्रॉनिक कन्वर्टर्स का विश्लेषण बायो इलेक्ट्रॉनिक्स बिजली की गुणवत्ता और आपूर्ति की लागत के आर्थिक मूल्यांकन बेसिक इलेक्ट्रिकल इंजीनियरिंग भार एवं विद्युत पावर प्लांट की विद्युत एवं औषधि उपयोगिताएँ विद्युतचुंबकीय क्षणिक कार्यक्रम (ईएमआई) विद्युतीकरण

में अनुक्रमित

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें