अमूर्त

Nonwhite Noise Reduction In Hyperspectral Images

Mrs.Suryatheja.M.B, Gokilamani.R

Noise reduction is an important preprocessing step to analyze the information in hyperspectral image (HSI).Because the common filtering methods for HSIs is based on the data vectorization or matricization while ignoring the related information between image planes, there are new approaches considering the multidimensional data as whole entities.For example, Multidimensional Wiener filtering (MWF) based on the third order tensor decomposition. To reduce the nonwhite noise from HSIs, the first step is to whiten the noise in HSIs through a prewhitening procedure. Then MWF can help to denoise the prewhitened data.Atlast an inverse prewhitening process can rebuild the estimated signal.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Index Copernicus
Academic Keys
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें