अमूर्त

HM Ant Miner Using Evolutionary Algorithm

G.Mohana Prabha, E.Balraj

A novel Ant Colony Optimization algorithm (ACO) combined for the hierarchical multi- label classification problem of protein function prediction. This kind of problem is mainly focused on biometric area, given the large increase in the number of uncharacterized proteins available for analysis and the importance of determining their functions in order to improve the current biological knowledge. Because it is known that a protein can perform more than one function and many protein functional-definition schemes are organized in a hierarchical structure, the classification problem in this case is an instance of a hierarchical multilabel problem. In this classification method, each class might have multiple class labels and class labels are represented in a hierarchical structure—either a tree or a directed acyclic graph (DAG) structure. A more difficult problem than conventional flat classification in this approach, given that the classification algorithm has to take into account hierarchical relationships between class labels and be able to predict multiple class labels for the same example. The proposed ACO algorithm discovers an ordered list of hierarchical multi-label classification rules.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें