अमूर्त

Fraud Detection Using A New Multilayered Detection System

Kaminee Gurav, Manisha Gurabe, Priyanka Suryawanshi, Prof.Sinu Mathew

Identity theft is a form of stealing someone's identity in which someone pretends to be someone else, usually as a method to gain access to resources or obtain benefits in that person's name. Identity crime is prevalent, and costly; and credit application fraud is a specific case of identity crime or identity theft. The existing non-data mining detection systems that uses business rules and scorecards, and known fraud matching have limitations. To overcome these limitations and combat identity crime in real-time, we propose a new multi-layered detection system consisting of communal detection (CD) and spike detection (SD) layers that are resilient. Resilience is the longterm capacity of a system to deal with change and continue to develop communal detection (CD) finds real social relationships to decrease the suspicion score, and is tamper-resistant to the synthetic social relationships. It is the whitelist oriented approach on a fixed set of attributes [1]. The CD algorithm matches all links against the whitelist to find communal relationships and reduce their link score. CD can detect more types of attacks; better account for changing legal behavior and spike detection (SD) complements CD.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Index Copernicus
Academic Keys
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें