अमूर्त

Discovering Multi-Level Association Rules using Fuzzy Hierarchies

Usha Rani, R. Vijaya Prakash, A. Govardhan

In this paper, Fuzzy concept hierarchies are used for multi-level association rule mining from large datasets via Attribute-Oriented Induction approach [1]. In this the process of fuzzy hierarchical induction approach is used and extends it with two new characteristics which improve applicability of the original approach in data mining. The proposed drilling-down approach of fuzzy induction model allows user to retrieve estimated explanations of the generated abstract concept. An application to discovery of multi-level association rules from environmental data stored in a Toxic Release Inventory is presented.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Index Copernicus
Academic Keys
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें