अमूर्त

Congestion Control in Wireless Communication Network Using Fuzzy Logic and Machine Learning Techniques

Abhishak Sawhney, Ritu Bhatia, Payal Mahajan

Nowadays wireless networks are the most popular way of communication. For example, internet services in companies, cafes, e-markets and in homes. Therefore, it must be protected against the spiteful users who try to harm the privacy, genuineness and privacy of it. Also there is need of traffic control of information sent over these wireless networks. In this research paper, a technique for controlling the congestion over the wireless networks is shown and to implement it, fuzzy logic and machine learning tools are used. Some of the parameters which are necessary to be considered for congestion control decision mechanism are:Transmission energy, queue size, distance from receiver, transmission rate, cost assigned. On evaluating these parameters using fuzzy logic, a desired output for congestion control can be determined and its efficiency is evaluated using machine learning tools.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

जर्नल हाइलाइट्स

अंकीय संकेत प्रक्रिया अतुल्यकालिक संकलन अधोचालकसंचालन अनुकूली संकेत संकेत अलग नेटवर्किंग आर्टिफ़िशियल क्लिनिक और इलेक्ट्रिकल में इलेक्ट्रिक ड्राइवर और उत्पाद इलेक्ट्रॉनिक सामग्री इलेक्ट्रॉनिक्स में आर्टिफिशियल ब्यूरो उपग्रह संचार एपीसैन निदान एवं संवेदन प्रणाली नियंत्रण सिद्धांत और सिद्धांत पावर इलेक्ट्रॉनिक कन्वर्टर्स का विश्लेषण बायो इलेक्ट्रॉनिक्स बिजली की गुणवत्ता और आपूर्ति की लागत के आर्थिक मूल्यांकन बेसिक इलेक्ट्रिकल इंजीनियरिंग भार एवं विद्युत पावर प्लांट की विद्युत एवं औषधि उपयोगिताएँ विद्युतचुंबकीय क्षणिक कार्यक्रम (ईएमआई) विद्युतीकरण

में अनुक्रमित

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें