अमूर्त

Computational Investigation of Flow Separation in Incompressible Aerodynamic Regime

B.S. Anil Kumar, Dr. Ramalingaiah, Dr. S. Manjunath, Rudresh Ganganna

Numerical simulation of flow past airfoils in the stalled region is a challenging problem due to various complex phenomena like strong vortex dynamics, boundary layer separation due to adverse pressure gradient etc. For accurate numerical prediction of separated flow, correct modeling of boundary layer is essential to capture the flow details. In the present work 2D Computational Fluid Dynamics (CFD) analysis for flow around NACA 23024 subsonic airfoil at Reynolds number of 3 million is carried out for a range of angle of attack (0 to +20 degrees) covering both the linear slope and stalling region using ANSYS FLUENT CFD software package. CFD analysis results are compared with the wind tunnel test results. The performance of Spalart-allamaras one equation turbulence model, K-epsilon turbulence model with standard wall functions is analyzed. Lift and drag coefficients measured in wind tunnel are compared with the CFD analysis results. Deviation between wind tunnel test results and CFD analysis results in the stalled region is analyzed and accurate methodology for capturing the aerodynamic flow phenomena is established

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें