अमूर्त

BOUNDS OF THE NUMBER OF LEVEL CROSSINGS OF THE RANDOM ALGEBRAIC POLYNOMIALS

A.K. MANSINGH & DR. P.K.MISHRA

In this paper we have estimate bounds of the number of level crossings of the random algebraic polynomials     n k k n k f x a t x 0 ( ,1) ( ) 0 where ak (t)  t,0  t 1, are dependent random variables assuming real values only and following the normal distribution with mean zero and joint density function M    M  a s (2 ) exp ( 1/ 2) ' 1/ 2 /   . There exists an integer n0 and a set E of measure at most A/(log n0log log log n0) such that, for each n>n0 and all not belonging to E, the equations (1.1) satisfying the condition (1.2), have at most (log log n) log n 2  roots where α and A are constants.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें