अमूर्त

Automatic Speech Recognition using ELM and KNN Classifiers

M.Kalamani, Dr.S.Valarmathy, S.Anitha

Automatic speech recognition system consist of two stages: One is Pre-processing stage and another one is classification stage. In pre processing stage continuous speech signal is recorded and segmented. The classification stage is used to classify the extracted features. The segmentation algorithm is hybrid of short time energy and spectral centroid. It has high segmentation accuracy. The Hit Rate rate is 95.33% and False Alarm rate is 4.67%. In this paper MFCC is used for feature extraction and ELM, KNN classifiers are used for speech classification. Compare to KNN classifier ELM classifier has high classification accuracy.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

Index Copernicus
Academic Keys
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

और देखें